Intersection Representation of Big Data Networks
and Triangle Counting

Wali Mohammad Abdullah
Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
w.abdullah@uleth.ca

Abstract—Triangles are an essential part of network analysis,
representing metrics such as transitivity ratio and clustering
coefficient Because of its diverse applications, enumeration and
counting of triangles in large networks has been extensively
studied, and continues to draw much interest from many dif-
ferent fields. This has only increased with the introduction of
approximate counting, parallel and distributed implementations,
and restricted and streaming data access scenarios. We propose a
compact and efficient representation of network data based on the
intersection of edge labels, and use sparse matrix data structures
for its computer implementation. We then present a scalable
algorithm that uses this structure to count triangles. On a set of
large (the largest with more that 3.6 billion edges) real-world and
synthetic networks, our algorithm performs significantly better
than the reference implementation miniTri [1].

Index Terms—Intersection matrix, Triangle count, Forward
degree cumulative, Forward neighbors, Sparse graph

I. INTRODUCTION

The presence of triangles in network data has led to the
creation of many metrics to aid in the analysis of graph
characteristics and network evolution over time [2]. Efficiently
representing network data is essential to improving analysis
capabilities, algorithm performance, and data visualization
potential [3]. Large real-life networks are typically sparse
in nature, which does not bode well for the traditionally
used adjacency matrix representation that requires much more
memory than necessary and does not scale well. In this
paper, we propose an “‘intersection” representation [4] of
network data based on sparse matrix data structures [5]. After
describing the triangle counting algorithm in terms of linear
algebra kernel operations, we demonstrate numerically that our
implementation is highly effective. We present the comparative
running times with reference implementation miniTri [1] and
show that our method scales very well on massive network
data.

II. INTERSECTION MATRIX REPRESENTATION

Let G = (V,E) be an undirected and connected graph
without self-loops or multiple edges between a pair of vertices.
Let the vertices in V be labelled 1,2, ...,|V| = n. Using the

David Awosoga
Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
david.awosoga@uleth.ca

Shahadat Hossain
Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta, Canada
shahadat.hossain @uleth.ca

labels on the vertices, a unique label can be assigned to each
edge e = {v;,v;}, i <j,k=1,2,...,|E| =m.

The intersection representation of graph G is a matrix X €
{0,1}™*™ in which for each column j of X there is a vertex
v; € V and {v;,v;} € E whenever there is a row k for which
X(k,i) =1 and X (k,j) = 1. The rows of X represent the
edge list sorted by vertex labels. Therefore, matrix X can be
viewed as an assignment to each vertex a subset of m labels
such that there is an edge between vertices ¢ and j if and
only if the inner product of the columns ¢ and j is 1. Since
the input graph is unweighted, the edges are simply ordered
pairs, and can be sorted in O(m) time. Unlike the adjacency
matrix which is unique (up to a fixed labelling of the vertices)
for graph G, there can be more than one intersection matrix
representation associated with graph G [6]. We exploit this
flexibility to store a graph in a structured and space-efficient
form.

1x X
- TN\ 2|x X
e \‘-. 31X X
@ @ \ al x X
h \ 5 X
o 6 X
. \ 7 X X
' 8 X X
@ @ 9 X X
10 X
1 X
12 X X

oy
w
>
>

Fig. 1. Example Input Graph and its Intersection Matrix Representation

A. Adjacency Matrix-based Triangle Counting

Many of the existing triangle counting methods use the
sparse representation of adjacency matrices in their calcu-
lations. The adjacency matrix A(G) = A € {0,1}VIxIVI
associated with graph G is defined as,

[1 if {v;,v;} where i # jisin E
A0,) _{ 0 otherwise

2021 IEEE Big Data Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/BigData52589.2021.9671349

https://www.computer.org/csdl/proceedings-article/big-data/2021/09671349/1A8jpID6W6A

It is well known in the literature that the number of closed
walks of length k£ > 0 are obtained in the diagonal entries
of kth power A* such that the total number of triangles in a
graph G, A(G), is given by the trace of A3,

A(G) = %TT(A?’).

The factor of % accounts for the multiple counting of a
triangle (the number of ways closed walks of length 3 can
be obtained is 3!). There is a large body of literature on
sparse linear algebraic triangle counting methods based on
adjacency matrix representation of the data [3]. miniTri’s
triangle counting implementation takes the adjacency matrix
A of the input graph and creates an incidence matrix B from
it [1]. The enumeration and counting of the triangles occur in
the overloaded matrix multiplication C = AB, where entries
in the resultant matrix C' with a value of 2 correspond to a
completed triangle. This method triple counts each triangle,
once for each vertex, so the final result is divided by 3
giving the total number of triangles in the graph. This is
a memory intensive process, since the multiplication of two
sparse matrices usually results in a dense matrix.

B. Intersection Matrix-based Triangle Counting

Graph algorithms can be effectively expressed in terms of
linear algebra operations [7], and we combine this knowledge
with our proposed data representation to count the triangles
in a structured three-step method. For vertex ¢ we first find
its neighbors j > 4 such that (i,j) € E by multiplying the
submatrix of X consisting of rows corresponding to edges
incident on 4 (let us call them (¢ — j)—rows) by the transpose
of the vector of ones of compatible length. A value of 1 in the
vector-matrix product indicates that the corresponding vertex
7 is a neighbor of vertex <.

Next, we multiply the submatrix of X consisting of columns
j identified in the previous step and the rows below the (i —
j)—rows by a vector of ones of compatible length. A value of
2 in the matrix-vector product indicates a triangle of the form
(i,4,7") where j and j' are neighbors of vertex ¢ with j < j'.
Let k£ be the row index in matrix X for which the matrix-
vector product contains a 2. Then it must be that X (k,j) =1
and X (k,j') = 1. Since each row of X contains exactly 2
nonzero entries that are 1, it follows that (j,j') € E.

The number of triangles in the graph is given by the sum
of the number of triangles associated with each vertex as
described. Since the edges are represented in sorted order in
our algorithm, unlike many other triangle counting methods
[1], each triangle is counted exactly once. Figure 1 displays a
graph with 7 vertices and 13 edges, along with its intersection
matrix X. The triangles of the form (1,7,j’) where j,j’ €
{3,5,6} are obtained from the product X (7 : 13,[3 5 6]) 1
where 1 denotes the vector of ones. The product has a 2
at locations corresponding to rows 7,8,12 of X and the
associated triangles are (1,3,5),(1,3,6), and (1,5, 6). Thus,
there are three triangles incident on vertex 1, and it can be
easily verified that the graph contains a sum of 7 triangles
across all of the vertices.

C. Data Structure

In our preliminary implementation, we use two additional
arrays to store some useful information that can be computed
after we sort the edges. FDC is an array of size n, where
its elements correspond to the total number of “forward
neighbors” across the vertices of the graph. Forward neighbors
are defined as the neighbors of a vertex that have a higher
label than the vertex of interest. With the vertices of the graph
labelled, finding the forward degree of a vertex j can be
calculated as fd(j) = FDC[Jj+1] — FDC[J]. FN is an
array of size m that stores which vertices are the forward
neighbors of a vertex j. Using FN we can find these forward
neighbors of j as fn(j) = FN[k], where k ranges from
FDC[Jj] to FDC[Jj+1]-1. The arrays FDC and FN thus
save the vector-matrix products needed to find the forward
neighbors. Figure 2 displays the arrays FDC and FN for the
graph of Figure 1.

FN= 356 56756757%67
FDC= 1 4 7 10 12 13 14

Fig. 2. FN and FDC for the Example Graph

III. NUMERICAL RESULTS

In this section, we provide results of numerical experiments
of selected test instances. The first set contains real-world
social network instances from the Stanford Network Anal-
ysis Project (SNAP), obtained from the Graph Challenge
website [8]. SNAP is a collection of more than 50 large
network datasets containing a large number of nodes and
edges, including social networks, web graphs, road networks,
internet networks, citation networks, collaboration networks,
and communication networks [9]. The first set of experiments
were performed using a Dell Precision T1700 MT PC with a
4th Gen Intel Core 17-4770 Processor (Quad Core HT, with
3.4GHz Turbo and 8GB RAM), running Centos Linux v7.9.
The implementation language was C'++ and the code was
compiled using —O3 optimization flag with a g++ version
4.4.7 compiler.

TABLE I
COMPARING OUR INTERSECTION ALGORITHM WITH MINITRI ON LARGE
REAL WORLD NETWORKS

Graph V] [E] A(G) miniTri | Intersection | Speedup
Loc-gowalla 196591 950327 2273138 143.7 0.234 615
roadNet-PA 1090920 1541898 67150 1.249 0.056 23
roadNet-TX 1393383 1921660 82869 1.537 0.071 22
flickrEdges 105938 2316948 107987357 876.4 1.544 568
amazon0312 400727 2349869 3686467 22.7 0.199 115
amazon0505 410236 3356824 3951063 24.73 0212 117
amazon0601 403394 3387388 3986507 24.28 0.214 114
roadNet-CA 1965206 5533214 120676 2224 0.102 22
Cit-Patents 3774768 33037894 7515023 146.3 2.043 72
com-friendster® | 65608366 | 3612134270 | 1175498452 N/A 659.37 N/A

2The com-friendster instance was run on a Compute Canada machine.

In Table I the CPU running times of the miniTri and
Intersection implementation on the 10 largest real-world test

2021 IEEE Big Data Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/BigData52589.2021.9671349

https://www.computer.org/csdl/proceedings-article/big-data/2021/09671349/1A8jpID6W6A

instances are compared. Times are computed in seconds, and
“N/A” denotes an instance where miniTri failed to compute.
The speedup of our intersection method over miniTri ranges
from a modest 22X to an impressive 568X.

TABLE II
COMPARING OUR INTERSECTION ALGORITHM WITH MINITRI ON LARGE
SYNTHETIC NETWORKS

Graph V] [E] A(G) miniTri | Intersection
graph500-scale18-ef16 | 262144 4194304 82287285 17440 9.357
graph500-scale19-ef16 | 524288 8388608 186288972 | 49211.8 25.21
graph500-scale20-ef16 | 1048576 16777216 | 419349784 | 197456 72.34
graph500-scale21-ef16 | 2097152 | 33554432 | 935100883 N/A 171.2
graph500-scale23-ef16 | 8388608 | 134217728 | 254165706 N/A 127478
graph500-scale24-ef16 | 16777216 | 268435456 | 1346226968 N/A 3386. 2

Table II compares our algorithm performance on large
synthetic test instances from GraphChallenge to miniTri. Due
to the sizes of the second set of instances, they were run
on the large High Performance Computing system (Graham
cluster) at Compute Canada. On the first 3 instances, our
method is over 1800 times faster than miniTri, and the
relative performance improves with increasing instance size,
further demonstrating the scalability of our triangle counting
algorithm.

TABLE III
TESTING OUR INTERSECTION ALGORITHM ON NETWORKS WITH
BILLIONS OF TRIANGLES

Graph (bn-human-) V] |E| A(G) Intersection
BNU_1_0025889_sess_2 742,862 | 131,926,773 | 14550152774 191.1
BNU_1_0025873_sess_2-bg | 692,397 | 140,102,158 | 16480195100 203.9
BNU_1_0025868_sess_1-bg | 727,487 | 150,443,553 | 18944842260 268.6
BNU_1_0025918_sess_1 748,521 | 159,835,566 | 23287278951 321.7
Jung2015_M87112427 728,874 | 171,231,873 | 21603267930 282.8
Jung2015_M87118465 774,886 | 181,569,095 | 24857761263 324.2
Jung2015_M87104201 707,284 | 191,224,983 | 25942442887 3422
Jung2015_M87101705 776,644 | 201,198,184 | 26497580631 364.8
Jung2015_M87125286 753,905 | 209,976,387 | 34150382906 426.9
Jung2015_M87113878 784,262 | 267,844,669 | 41727013307 538.5

Finally, Table III demonstrates our algorithm’s performance
on relatively dense brain networks from [10], back on the linux
environment. miniTri was unable to compute results for any
of the instances, so their column was omitted.

Samsi et al. [11] provide a comprehensive review of the
state-of-the-art triangle counting algorithms from the 2017-
2019 MIT/Amazon/IEEE Graph Challenges, analyzing and
comparing the performance of different submissions by fitting
a model of graph counting times, 73.;, as a function of the
number of edges N, = | E|. They then use this data to estimate
the parameters /V; (the number of edges that can be processed
in one second) and f:

Ttm' = (Ne/Nl)ﬁ

to compare different counting implementations. Submis-
sions with a larger N7 and smaller 8 perform the best, and
the top entries from 2019 had N; values ranging from 5 x 10°
to 5 x 108, and 3 values ranging from 3 to 3. Our algorithm

had g = % and N; = 1 x 107, values competitive with the top
submissions.

IV. CONCLUSION

Network data is usually input as a list of edges which can be
preprocessed into a representation such as an adjacency matrix
or adjacency list, suitable for algorithmic processing. We have
presented a simple yet flexible scheme based on intersecting
edge labels, the intersection matrix, for the representation of
and calculation with network data. A new linear algebra-based
method exploits this intersection representation for triangle
counting — a kernel operation in big data analytics. The
computational results from a set of large-scale synthetic and
real-world network instances clearly demonstrate that our basic
implementation is efficient and scales well. The two arrays
FDC and FN together constitute a compact representation of
the sparsity pattern of network data, requiring only n+m+1
units of storage. This is incredibly useful in the exchange of
network data, with the potential to allow for many additional
intersection matrix-based network analytics and algorithms.

V. ACKNOWLEDGMENT

This research was supported in part by NSERC Discovery
Grant (Individual), NSERC Undergraduate Student Research
Award, and the AITF Graduate Student Scholarship. A part of
our computations were performed on Compute Canada HPC
system (http://www.computecanada.ca), and we gratefully ac-
knowledge their support.

REFERENCES

[1] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear algebra
building blocks approach for scalable graph analytics,” in 2015 IEEE
High Performance Extreme Computing Conference (HPEC). 1EEE,
2015, pp. 1-6.

[2] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a
review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 2, p. 1226, 2018.

[3] P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
vol. 16, no. 3, pp. 157-166, 2017.

[4] E. Szpilrajn-Marczewski, “A translation of sur deux propriétés des
classes d’ensembles by,” Fund. Math, vol. 33, pp. 303-307, 1945.

[5] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny,
“DSIM: a software toolkit for direct determination of sparse Jaco-
bian matrices,” in International Congress on Mathematical Software.
Springer, 2016, pp. 275 — 283.

[6] W. M. Abdullah, S. Hossain, and M. A. Khan, “Covering large complex
networks by cliques—a sparse matrix approach,” in Recent Develop-
ments in Mathematical, Statistical and Computational Sciences, D. M.
Kilgour, H. Kunze, R. Makarov, R. Melnik, and X. Wang, Eds. Cham:
Springer International Publishing, 2021, pp. 117-127.

[7] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[8] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mo-
hindra, P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Sta-
heli, and J. Kepner, “Static graph challenge: Subgraph isomorphism,”
http://graphchallenge.mit.edu/data-sets, IEEE HPEC, 2017, accessed:
2021-07-09.

[9] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, Jun. 2014, accessed:

2019-10-02.

R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” in AAA/, 2015. [Online].

Available: https://networkrepository.com

S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,

P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,

“Graphchallenge.org triangle counting performance,” IEEE HPEC, 2020.

(10]

(11]

2021 IEEE Big Data Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/BigData52589.2021.9671349

https://www.computer.org/csdl/proceedings-article/big-data/2021/09671349/1A8jpID6W6A

