
Efficient Calculation of Triangle Centrality in Big
Data Networks

Wali Mohammad Abdullah
Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

w.abdullah@uleth.ca

David Awosoga
Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

odo.awosoga@gmail.com

Shahadat Hossain
Mathematics and Computer Science

University of Lethbridge
Lethbridge, Alberta, Canada

shahadat.hossain@uleth.ca

Abstract—The notion of “centrality” within graph analytics
has led to the creation of well-known metrics such as Google’s
PageRank [1], which is an extension of eigenvector centrality [2].
Triangle centrality is a related metric [3] that utilizes the presence
of triangles, which play an important role in network analysis, to
quantitatively determine the relative “importance” of a node in
a network. Efficiently counting and enumerating these triangles
are a major backbone to understanding network characteristics,
and linear algebraic methods have utilized the correspondence
between sparse adjacency matrices and graphs to perform such
calculations, with sparse matrix-matrix multiplication as the
main computational kernel. In this paper, we use an intersection
representation of graph data implemented as a sparse matrix,
and engineer an algorithm to compute the triangle centrality
of each vertex within a graph. The main computational task
of calculating these sparse matrix-vector products is carefully
crafted by employing compressed vectors as accumulators. As
with other state-of-the-art algorithms [4], our method avoids
redundant work by counting and enumerating each triangle
exactly once. We present results from extensive computational
experiments on large-scale real-world and synthetic graph in-
stances that demonstrate good scalability of our method. We
also present a shared memory parallel implementation of our
algorithm.

Index Terms—intersection matrix, local triangle count, forward
degree cumulative, forward neighbours, sparse graph, triangle
centrality

I. INTRODUCTION

A cycle of length 3, colloquially known as a triangle, is
the smallest non-trivial clique found in a graph. Counting
and enumerating triangles is crucial to gaining insights into
the underlying composition and distribution of network data,
leading to the creation of many metrics. To properly analyze
graph characteristics, its structure must be critically examined
and understood, because an efficient representation of network
data will dictate analysis capabilities and improve algorithm
performance and data visualization potential [5]. Large real-
life networks are typically sparse in nature, so efficient com-
putations with these graphs must be able to account for their
sparsity and skewed degree distribution [6]. A consistent struc-
ture makes linear algebra-based triangle enumeration methods
appealing, and most methods use direct or modified matrix-
matrix multiplication, with a notable exception being the im-
plementation of Low et al. [7]. The MIT/Amazon/IEEE Graph
Challenge sponsored graph analytics challenge features the

current state-of-the art in triangle counting and enumeration
[8].

There is a large number of network topological metrics
that involve the application of triangle enumeration, including
transitivity ratio - the ratio between the number of triangles
and the paths of length two in a graph - and clustering
coefficient; the fraction of neighbours for a vertex i of a graph
who are neighbours themselves. Other real-life applications of
triangle counting include spam detection [9], network motifs in
biological pathways [10], and community discovery [11]. This
paper extends counting [12] and enumeration [13] algorithms
to efficiently compute “node centrality” in large networks.
We utilize an “intersection” representation of network data
obtained as a list of edges [14] and based on sparse matrix
data structures [15]. Our triangle enumeration algorithm de-
rives its simplicity and efficiency by employing matrix-vector
product calculations as its main computational kernel. The
local triangle count and triangle centrality of each vertex is
then acquired from the enumerated triangles resulting from
this matrix-vector multiplication.

A. Triangle Centrality

Burkhardt [3] introduced triangle centrality as a new cen-
trality measure that captures the influence of triangles on the
importance of vertices. A vertex is designated as “important”
if many neighbours of that vertex are cohesive with their own
neighbours. In other words, if the neighbours of a vertex are
members of many triangles, the influence of the vertex of
interest is strengthened. The calculation of triangle centrality
finds important vertices that have both direct and indirect
endorsements, because though a vertex may not be in triangles
with many (or any) of its neighbours, it could still be supported
by neighbouring vertices that are involved in many triangles.
These important vertices cannot be identified using other
centrality measures such as degree centrality or eigenvector
centrality, and this gives triangle centrality a noted advantage
in identifying, for example, spam nodes.

Let G = (V,E) be a connected and undirected graph
without multiple edges and self-loops, where V denotes the
set of vertices and E denotes the set of edges. Let N(v) be
the neighbourhood set of v (i.e., vertices {w|{v, w} ∈ E}),
N∆(v) ⊂ N(v) be the set of neighbours that are in triangles

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:
 DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

with v, and N+
∆(v) = N∆(v) ∪ {v} be the closed set that

includes v. The number of triangles incident on vertex v
is called its local triangle count, denoted as ∆(v). Finally,
∆(G) =

∑
v∈V ∆(v) denotes the total triangle count of graph

G. The triangle centrality [3] of vertex v is defined as,

TC(v) =

1
3

∑
u∈N+

∆(v) ∆(u) +
∑

w∈{N(v)\N∆(v)} ∆(w)

∆(G)

The factor of 1
3 in the first expression accounts for the triple

counting of triangle degree at a vertex. In other words, the
triangle centrality of vertex v is the sum of v’s and its
neighbours’ local triangle counts divided by the number of
triangles in the graph. By definition, the centrality values
indicate the proportion of triangles centered at a vertex and
its neighbours bounded in the range [0, 1].

The remainder of the paper is organized as follows. In
Section II, we use an intersection representation of network
data and other data structures, followed by a brief description
of the triangle enumeration [13] and the triangle centrality al-
gorithms. The rest of the section explains the main ideas in our
intersection matrix-based triangle enumeration implementation
using an illustrative example. Li and Bader [16] presented a
rapid implementation of triangle centrality using GraphBLAS
[17], an API specification for describing graph algorithms in
the language of linear algebra. This paper first implements
serial triangle centrality and presents a comparative result in
Section IV, which also outlines the computing environment
employed to perform numerical experiments on three sets
of representative network data. In Section III, we describe
a simple scalable shared memory parallel implementation of
our intersection-based algorithm, TC-Intersection. The paper
is summarized in Section V with pointers on future research
directions.

II. INTERSECTION REPRESENTATION OF NETWORK DATA

Let the vertices in V be labelled 1, 2, . . . , |V | = n in a
natural order. Using the labels on the vertices, a unique label
can be assigned to each edge ek = {vi, vj}, i < j, k =
1, 2, . . . , |E| = m.

The intersection representation of graph G is a matrix X ∈
{0, 1}k×n in which for each column j of X there is a vertex
vj ∈ V and {vi, vj} ∈ E whenever there is a row l for which
X(l, i) = 1 and X(l, j) = 1. For k = m we have a canonical
form such that the rows of X represent the edge list sorted
by vertex labels. The transpose of this canonical intersection
form is also known as the incidence matrix in graph literature.
Matrix X can be viewed as an assignment to each vertex a
subset of m labels such that there is an edge between vertices
i and j if and only if the inner product of the columns i
and j is 1. Since the input graph is unweighted, the edges
are simply ordered pairs, and can be sorted in O(m) time.
Unlike the adjacency matrix which is unique (up to a fixed
labelling of the vertices) for graph G, there can be more than
one intersection matrix representation associated with graph G
[18]. We exploit this flexibility to store a graph in a structured
and space-efficient form.

Fig. 1. Intersection Matrix Representation of the Example Input Graph

A. Intersection Matrix-based Triangle Counting

Graph algorithms can be effectively expressed in terms of
linear algebra operations [19], and we combine this knowledge
with our proposed data representation to count the triangles in
a structured three-step method. For a vertex i we first find
its neighbours j > i such that {i, j} ∈ E by multiplying the
submatrix of X consisting of rows corresponding to edges
incident on i (let us call them (i− j)−rows) by the transpose
of the vector of ones of compatible length. A value of 1 in the
vector-matrix product indicates that the corresponding vertex
j is a neighbour of vertex i.

Next, we multiply the submatrix of X consisting of columns
j identified in the previous step and the rows below the (i−
j)−rows by a vector of ones of compatible length. A value of
2 in the matrix-vector product indicates a triangle of the form
(i, j, j′) where j and j′ are neighbours of vertex i with j < j′.
Let l be the row index in matrix X for which the matrix-vector
product contains a 2. Then it must be that X(l, j) = 1 and
X(l, j′) = 1. Since each row of X contains exactly 2 nonzero
entries that are 1, it follows that {j, j′} ∈ E. This operation
is identical to performing a set intersection on the forward
neighbours of vertices j and j′, where the forward neighbours
are defined as the neighbours of a vertex that have a higher
label than the vertex of interest.

The number of triangles in the graph is given by the
sum of the number of triangles associated with each vertex
as described. The sorted representation of the edges in our
algorithm ensures that each triangle is counted exactly once.
Figure 1 displays the intersection matrix representation of the
input graph X . The triangles of the form (1, j, j′) where j, j′ ∈
{3, 5, 6} are obtained from the product X(7 : 13, [3 5 6]) ∗ 1,
where 1 denotes the vector of ones. The product has a 2
at locations corresponding to rows 7, 8, and 12 of X and
the associated triangles are (1, 3, 5), (1, 3, 6), and (1, 5, 6).
Therefore, there are three triangles incident on vertex 1, and
it can be easily verified that the graph contains a total of 7
triangles across all of the vertices.

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

B. Data Structure

In our preliminary implementation, we use two arrays to
store useful information that can be computed after we sort the
edges. FDC (Forward Degree Cumulative) is an array of size n,
with elements corresponding to the total number of “forward
neighbours” across the vertices of a graph. With the vertices
of the graph labelled in a natural order, finding the forward
degree of a vertex j can be calculated as fd = FDC[j+1]
- FDC[j]. FN is an array of size m that stores which vertices
are the forward neighbours of a vertex j. Using FN we can find
these forward neighbours of j as fn(j) = FN[k], where k
ranges from FDC[j] to FDC[j+1]-1. The arrays FDC and
FN thus save the vector-matrix products needed to find the
forward neighbours. Figure 2 displays the arrays FDC and FN
for the example graph from Figure 1.

Fig. 2. FN and FDC for the Example Input Graph.

C. fullCount Algorithm

Let j be the column (vertex) of matrix X (graph G)
currently being processed in the fullCount algorithm given
below. For each pair of forward neighbours j′ and j′′ there is
an edge between them if and only if both of the corresponding
columns contain a 1 in some row l identifying the triangle
(j, j′, j′′). In terms of the matrix-vector multiplication in
line 7 of algorithm fullCount, vector T will get updated as
T (k) ← 2. Thus the triangle (j, j′, j′′) can be enumerated
immediately. The local triangle count and local edge support
(number of triangles incident on an edge) are dynamically
updated with this same information and stored in the vertDeg
and edgeDeg arrays respectively, as shown in Figure 3 for the
example input graph. The running total of number of triangles
in the graph G is updated and stored in count as each vertex
is processed.

Fig. 3. vertDeg and edgeDeg for the Example Input Graph.

fullCount (X)
Input: Intersection matrix X

1: Compute FDC ▷ Forward degree cumulative
2: Compute FN ▷ Forward neighbour
3: count← 0 ▷ Number of triangles in G
4: for j = 1 to n− 1 do ▷ j ∈ V , where V is the vertex set
5: fd← FDC[j + 1]− FDC[j] ▷ fd: forward degree
6: if fd > 1 then
7: T = X([FDC[j + 1] : m], fnj) ∗ 1
8: S = {t | T [t] = 2}
9: if S ̸= ∅ then

10: count← count+ |S|
11: for t ∈ S do
12: update vertDeg ▷ Local triangle count
13: update edgeDeg ▷ Local edge support
14: return count, vertDeg, and edgeDeg

D. Triangle Centrality

1) Using GraphBLAS: A calling card of GraphBLAS is the
elegance by which graph algorithms can be expressed using
linear algebra. Such formulations are easy to understand and
give users the ability to quickly develop implementations for
various problems [16], [19], [20]. Li and Bader’s [16] imple-
mentation of triangle centrality uses SuiteSparse:GraphBLAS
version 5.1.5 to cast the equation from Section I-A into a linear
algebraic formulation. Their algorithm requires two inputs,
an adjacency matrix A in sparse matrix representation, and
the graph triangle matrix T in sparse matrix representation,
where T = A2 ◦A, that is, the Hadamard product of the graph
triangle matrix T [5] and A. T is computed with a masked
matrix multiply in GraphBLAS, which saves space by only
computing entries in the pattern of A and not all of A2. From
these inputs, a binary matrix T̂ and the remaining components
that comprise the notion of triangle centrality vector C are
computed to yield

C =
(3A− 2T̂ + I)T1

1T T1

2) Using Intersection Representation: We use our TC al-
gorithm to calculate triangle centrality by taking the local
triangle count and edge support information from fullCount
and performing additional computations on each vertex of the
network instance. This is done in the function Neighbour
by creating a binary neighbours array of size 2m that is
formulated by iterating across each vertex in the graph and
examining the local edge support of its neighbours, giving a
1 if the support is nonzero and 0 otherwise. TC then iterates
over each vertex j in the input graph and uses neighbours to
determines whether its neighbour k forms a triangle with it.
If k does, a direct endorsement of j’s importance is identified
and k’s local triangle count is added to the core triangle sum
(CTS) of vertex j’s centrality, which is finally divided by three
once all of its neighbours have been evaluated to account
for the undirectedness of each triangle within the network.
This sum is the left side of the numerator from the equation
stated in Section I-A. Otherwise, k’s local triangle count is
added to the reference vertex’s non-core triangle sum, which
signifies an indirect endorsement of importance. These two
totals are added together to form the total triangle sum and then
divided by the total triangle count in the graph to give vertex
j’s triangle centrality. Performing the outlined steps across
an entire network produces a triangle centrality table with a
ranking of each vertex, such as the one for the example input
graph shown in Table I.

The full triangle centrality algorithm is given below.

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

TABLE I
TRIANGLE CENTRALITY TABLE FOR EXAMPLE INPUT GRAPH

V CTS/3 NCTS Centrality Rank
1 17/3 0 17/21 5
2 14/3 0 14/21 6
3 19/3 0 19/21 2
4 0 6 6/7 4
5 19/3 0 19/21 2
6 21/3 0 21/21 1
7 14/3 0 14/21 6

3) Triangle Centrality Algorithm:
TC (X , vertDeg, count, neighbours)
Input: Intersection matrix X , vertDeg, count,
neighbours

1: for j = 1 to n do ▷ j ∈ V , where V is the set of vertices
2: CTS ← vertDeg[j] ▷ CTS: core triangle sum
3: NCTS ← 0 ▷ NCTS: non core triangle sum
4: for k ∈ neighbours[j] do
5: if k forms a triangle with j then
6: CTS ← CTS + vertDeg[k]
7: else
8: NCTS ← NCTS + vertDeg[k]

9: TC[j]←
1
3×CTS+NCTS

count

10: return TC

III. PARALLEL IMPLEMENTATION OF TRIANGLE
CENTRALITY

A. Parallel fullCount Algorithm

We have discussed the serial version of our fullCount
algorithm in Section II-C, and here we present the paral-
lel version. Each thread counts triangles using the private
variable, loc count in the parallel region, and loc vertDeg
and loc edgeDeg track the local triangle count and edge
support for each vertex. After all the threads complete their
task locally, the master thread updates all the variables in the
critical region to avoid a race condition.

ParallelFullCount (X)
Input: Intersection matrix X

1: Calculate FDC ▷ Forward degree cumulative
2: Calculate FN ▷ Forward neighbour
3: count← 0 ▷ Number of triangles
4: parallel region
5: loc count← 0 ▷ Local number of triangles
6: do in parallel
7: for j = 1 to n− 1 do
8: fd← FDC[j + 1]− FDC[j]
9: if fd > 1 then

10: T = X([FDC(j + 1) : m], fnj) ∗ 1
11: S = {t | T [t] = 2}
12: if S ̸= ∅ then
13: loc count← loc count+ |S|
14: for t ∈ S do
15: update loc vertDeg
16: update loc edgeDeg

17: critical region
18: count← count+ loc count
19: for j = 1 to m do
20: edgeDeg[j]← edgeDeg[j] + loc edgeDeg[j]
21: if j ≤ n then
22: vertDeg[j] ← vertDeg[j] +

loc vertDeg[j]

23: return count, vertDeg, and edgeDeg

B. Parallel Triangle Centrality Algorithm

The ParallelTC algorithm is a straightforward extension of
its serial counterpart because the triangle centrality of each
vertex j ∈ V is calculated independently. There is no fear
of race conditions occurring in the parallel for loop, greatly
streamlining computations.

ParallelTC (X , vertDeg, count, neighbours)
Input: Intersection matrix X , vertDeg, count,
neighbours

1: do in parallel
2: for j = 1 to n do
3: CTS ← vertDeg[j] ▷ CTS: core triangle sum
4: NCTS ← 0 ▷ NCTS: non core triangle sum
5: for k ∈ neighbours(j) do
6: if k forms a triangle with j then
7: CTS ← CTS + vertDeg[k]
8: else
9: NCTS ← NCTS + vertDeg[k]

10: TC[j]←
1
3×CTS+NCTS

count

11: return TC

IV. NUMERICAL RESULTS

We refer to the serial implementation by Li and Bader [16]
as TC-GrB and our algorithm as TC-Intersection. We
report the running times for fullCount, the creation of the
neighbours array in Neighbour, and the triangle centrality
calculation performed in TC separately and then sum these
times to compare with TC-GrB. Our implementation language
was C++ and the code was compiled with a g++ version 4.4.7
compiler in an ASUS VivoBook Flip 14 PC with a 7th Gen
Intel Core I5-7200U Processor (Dual Core, with 2.5GHz and
5GB RAM), running Linux Mint 19. Both implementations
were tested in the same environment so that direct comparisons
could be run, and reported times were averaged from 10 trials.

Table II shows the performance comparison between
TC-GrB and our TC-Intersection serial triangle cen-
trality algorithm. The test instances include the graphs from
[16] as well as four additional standard benchmark instances
[21]. For each test instance, the table lists the number of
vertices and the number of edges, as well as the number of
triangles. The running time for the algorithms are in seconds.
For TC-Intersection we give a breakdown of the overall
running time: time for fullCount, time to compute the
neighborhood information Neighbour, and time to perform
the actual centrality calculation TC. As shown by the time
breakdown, the majority of the work is done in the fullCount

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

TABLE II
PERFORMANCE COMPARISON BETWEEN GRAPHBLAS AND OUR INTERSECTION MATRIX ALGORITHM FOR IMPLEMENTING TRIANGLE CENTRALITY

Graph Characteristics Time in Seconds
Name |V | |E| ∆(G) TC-GrB TC-Intersection

fullCount Neighbour TC Total
com-DBLP 317080 1049866 2224385 0.46 0.23 0.08 0.01 0.32
roadNet-CA 1971281 2766607 120676 0.13 0.06 0.06 0.02 0.14
web-Google 916428 4322051 13391903 4.29 3.20 0.63 0.06 3.89
com-Youtube 1134890 2987624 3056386 3.23 3.42 1.44 0.03 4.89
as-Skitter 1696415 11095298 28769868 9.63 60.82 15.73 0.08 76.62
cit-Patents 3774768 16518947 7515023 11.52 2.65 1.95 0.31 4.90
com-LiveJournal 3997962 34681189 177820130 45.93 43.13 5.59 0.33 49.05
com-Orkut 3072441 117185083 627584181 645.20 453.31 46.63 1.29 501.23

algorithm, as the triangle centrality calculation done in TC
makes up a small fraction of the total time. As shown in the
table, the overall performance of TC-Intersection and
TC-GrB is comparable, the lone exception being as-Skitter.
On the largest instance com-Orkut, TC-Intersection is
faster. We remark that the numerical experiments as presented
reflects the assumption that we perceive triangle counting tasks
of computing ∆(G), vertDeg, and edgeDeg (as in algorithm
fullCount) as basic or kernel analytics which form essential
ingredients in exploring for further insights into the underlying
structural or functional characteristics of the network via
calculations such as triangle centrality [3], K-count [13], [22],
K-Truss [23], [24] etc. On the other hand, for an efficient
implementation of a specific calculation e.g., the triangle
centrality, the edge support calculation in algorithm fullCount
is unnecessary. As edge support calculation is computationally
more expensive than the local triangle count calculation, the
running time for computing just the local triangle degree
vector vertDeg is expected to be much smaller than fullCount.
Moreover, triangle neighbourhood information (shown under
label “Neighbour” in Table II) can be obtained directly from
vertDeg calculations. Comparisons on larger graphs were not
performed due to capacity limits within the testing environ-
ment and will be the subject of further study.

A. Scalability of the Parallel Implementation
This section contains experimental results from selected

test instances where we run our parallel implementation of
TC-Intersection on the High-Performance Computing system
(Graham Cluster) at Compute Canada. The implementation
language was C++, and we varied the number of threads
between 1 and 8 using OpenMP directives. The selected test
instances came from two groups, the first being brain networks
from the Network Repository [25] that had between 15 and
268 million edges and up to 42 trillion triangles. The second
set was comprised of the larger Graph-500 synthetic test
instances from GraphChallenge [26]. Table III gives the graph
statistics for each tested instance, and includes the relative
density of the networks, which we calculated as the ratio of
edges present in the graph divided by the number of edges
that would be present if the graph was complete:

Density =
|E|

|V |×(|V |−1)
2

Figures 4 and 5 depict the scalability results for brain
networks and Graph-500 instances respectively, when the
number of threads are increased from 1 to 8. The shared
memory parallel TC-Intersection shows good scalability
on both sets of test instances with a slight edge with the brain
graph instances, likely due to their increased density compared
to the sparser Graph-500 instances. This could affect the
load balancing for each thread in the fullCount algorithm,
where the more even work for each node within the brain
networks could reduce idling time.

Fig. 4. Speed-up of Brain Networks for Parallel TC-Intersection

V. CONCLUSION

Network data is usually input as a list of edges which can
be preprocessed into a representation such as an adjacency
matrix or adjacency list, suitable for algorithmic processing.
We have presented a simple yet flexible scheme based on
intersecting edge labels, the intersection matrix, for the repre-
sentation of and calculation with network data. A novel linear
algebra-based method exploits this intersection representation
for triangle computation – a kernel operation in big data

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

TABLE III
GRAPH CHARACTERISTICS OF BRAIN AND GRAPH-500 NETWORK INSTANCES

Name (prepended with “bn-human”) |V | |E| ∆(G) Density
BNU 1 0025890 session 1 177,584 15669037 662694994 9.94E-04
Jung2015 M87125334 763,149 40258003 1515479025 1.38E-04
Jung2015 M87104509 737,579 50037313 2512591873 1.84E-04
Jung2015 M87119472 835,832 59548327 3023865951 1.70E-04
Jung2015 M87104300 851,113 67658067 3516573387 1.87E-04
Jung2015 M87118347 428,842 79114771 6884218472 8.60E-04
Jung2015 M87102575 935,265 87273967 4732564614 2.00E-04
Jung2015 M87122310 924,284 94370886 5577667716 2.21E-04
BNU 1 0025914 session 2 701,145 103134404 9531928703 4.20E-04
BNU 1 0025916 session 1 714,571 112519748 10147347192 4.41E-04

Graph-500 Instances (prepended with “graph500”)
scale18-ef16 262144 4194304 82287285 1.22E-04
scale19-ef16 524288 8388608 186288972 6.10E-05
scale20-ef16 1048576 16777216 419349784 3.05E-05
scale21-ef16 2097152 33554432 935100883 1.53E-05
scale22-ef16 4194304 67108864 2067392370 7.63E-06

Fig. 5. Speed-up of Graph-500 Networks for Parallel TC-Intersection

analytics. The two arrays FDC and FN together constitute
a compact representation of the sparsity pattern of network
data, requiring only n+m units of storage. This is incredibly
useful in the exchange of network data, with the potential
to allow for the computation of many intersection-matrix-
based network analytics, of which triangle centrality is one
application. By drawing from both direct and indirect triangle
endorsements of vertices, triangle centrality stands apart from
other centrality measures and has the potential to provide
better performance in network analysis, for example, in spam
node detection. This paper demonstrated the effectiveness of
our TC-Intersection algorithm for computing the triangle cen-
trality of a vertex and showed competitive comparative results
with the implementation of GraphBlAS. We also remark that
the TC-Intersection algorithm can be made significantly faster
by avoiding unnecessary computations as outlined in Section
IV. The parallel implementation of TC-Intersection showed
promising scalability results on large synthetic and real-world
instances, and cache efficiency is being studied for additional
optimizations within the algorithm, exploring temporal and

spatial locality to analyze the memory footprint and provide
further improvements.

ACKNOWLEDGMENT

This research was supported in part by NSERC Dis-
covery Grant (Individual). A part of our computa-
tions was performed on Compute Canada HPC system
(http://www.computecanada.ca), and we gratefully acknowl-
edge their support.

REFERENCES

[1] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” Computer Networks, vol. 30, pp. 107–117, 1998.
[Online]. Available: http://www-db.stanford.edu/ backrub/google.html

[2] P. Bonacich, “Factoring and weighting approaches to status
scores and clique identification,” The Journal of Mathematical
Sociology, vol. 2, no. 1, pp. 113–120, 1972. [Online]. Available:
https://doi.org/10.1080/0022250X.1972.9989806

[3] P. Burkhardt, “Triangle centrality,” ArXiv, vol. abs/2105.00110, 2021.
[4] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-

manickam, “Fast linear algebra-based triangle counting with kokkosker-
nels,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2017, pp. 1–7.

[5] P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
vol. 16, no. 3, pp. 157–166, 2017.

[6] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a
review,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 2, p. e1226, 2018.

[7] T. M. Low, V. N. Rao, M. Lee, D. Popovici, F. Franchetti, and S. McMil-
lan, “First look: Linear algebra-based triangle counting without matrix
multiplication,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2017, pp. 1–6.

[8] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Graphchallenge.org triangle counting performance,” IEEE HPEC, 2020.

[9] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient algorithms
for large-scale local triangle counting,” in ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 4, no. 3. ACM New York,
NY, USA, 2010, pp. 1–28.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[11] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
nature, vol. 435, no. 7043, pp. 814–818, 2005.

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

[12] W. M. Abdullah, D. Awosoga, and S. Hossain, “Intersection repre-
sentation of big data networks and triangle counting,” in 2021 IEEE
International Conference on Big Data (Big Data), 2021, pp. 5836–5838.

[13] ——, “Intersection representation of big data networks and triangle
enumeration,” in International Conference on Computational Science.
Springer, 2022, pp. 413–424.

[14] E. Szpilrajn-Marczewski, “A translation of sur deux propriétés des
classes d’ensembles by,” Fund. Math, vol. 33, pp. 303–307, 1945.

[15] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny,
“DSJM: a software toolkit for direct determination of sparse Jaco-
bian matrices,” in International Congress on Mathematical Software.
Springer, 2016, pp. 275 – 283.

[16] F. Li and D. A. Bader, “A graphblas implementation of triangle central-
ity,” in 2021 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2021, pp. 1–2.

[17] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke et al., “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2016, pp. 1–9.

[18] W. M. Abdullah, S. Hossain, and M. A. Khan, “Covering large complex
networks by cliques—a sparse matrix approach,” in Recent Develop-
ments in Mathematical, Statistical and Computational Sciences, D. M.
Kilgour, H. Kunze, R. Makarov, R. Melnik, and X. Wang, Eds. Cham:
Springer International Publishing, 2021, pp. 117–127.

[19] J. Kepner and J. Gilbert, Graph algorithms in the language of linear

algebra. SIAM, 2011.
[20] M. Pelletier, W. Kimmerer, T. A. Davis, and T. G. Mattson, “The

graphblas in julia and python: the pagerank and triangle centralities,” in
2021 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2021, pp. 1–7.

[21] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014, accessed:
2022-07-08.

[22] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear algebra
building blocks approach for scalable graph analytics,” in 2015 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2015, pp. 1–6.

[23] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National security agency technical report, vol. 16, no. 3.1, 2008.

[24] P. Burkhardt, V. Faber, and D. G. Harris, “Bounds and algorithms for
k-truss,” arXiv preprint arXiv:1806.05523, 2018.

[25] R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in Twenty-ninth
AAAI conference on artificial intelligence, 2015. [Online]. Available:
https://networkrepository.com

[26] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mo-
hindra, P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Sta-
heli, and J. Kepner, “Static graph challenge: Subgraph isomorphism,”
http://graphchallenge.mit.edu/data-sets, IEEE HPEC, 2017, accessed:
2021-07-09.

 2022 IEEE HPEC Camera Ready Version
To cite this paper please use the final published version:

DOI: 10.1109/HPEC55821.2022.9926324

https://ieeexplore.ieee.org/document/9926324

