
Covering Large Complex Networks by
Cliques—A Sparse Matrix Approach

W. M. Abdullah, S. Hossain, and M. A. Khan

Abstract The Edge Clique Cover (ECC) problem is concerned with covering edges
of a graph with the minimum number of cliques, which is an NP-hard problem. This
problem has many real-life applications, such as, in computational biology, food
science, efficient representation of pairwise information, and so on. In this work
we propose using a compact representation of network data based on sparse matrix
data structures. Building upon an existing ECC heuristic due to Kellermanwe proffer
adding vertices during the clique-growing step of the algorithm in judiciously chosen
degree-based orders. On a set of standard benchmark instances our ordered approach
produced smaller sized clique cover compared to unordered processing.

Keywords Adjacency matrix · Clique cover · Intersection matrix · Vertex
ordering · Sparse graph

1 Introduction

Identification of and computation with dense or otherwise highly connected sub-
graphs are two of the kernel operations arising in areas as diverse as sparse matrix
determination and complex network analysis [1, 6, 9]. Identification of special inter-
est groups or characterization of information propagation are examples of frequently
performed operations in social networks [8]. Efficient representation of network
data is critical to addressing algorithmic challenges in the analysis of massive data
sets using graph theoretic abstractions. In this paper, we propose sparse matrix data

W. M. Abdullah (B) · S. Hossain
University of Lethbridge, Alberta, Canada
e-mail: w.abdullah@uleth.ca

S. Hossain
e-mail: shahadat.hossain@uleth.ca

M. A. Khan
Inbridge, Alberta, Canada
e-mail: muhammad@inbridgeinc.com

© Springer Nature Switzerland AG 2021
D. M. Kilgour et al. (eds.), Recent Developments in Mathematical, Statistical
and Computational Sciences, Springer Proceedings in Mathematics & Statistics 343,
https://doi.org/10.1007/978-3-030-63591-6_11

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63591-6_11&domain=pdf
mailto:w.abdullah@uleth.ca
mailto:shahadat.hossain@uleth.ca
mailto:muhammad@inbridgeinc.com
https://doi.org/10.1007/978-3-030-63591-6_11

118 W. M. Abdullah et al.

structures to enable compact representation of graph data and use an existing sparse
matrix framework [5] to design efficient algorithms for the ECC problem.

Let G = (V, E) be an undirected connected graph with |V | = n vertices and
|E | = m edges. A clique is a subset of vertices such that every pair of distinct vertices
are connected by an edge in the induced (by the subset of vertices) subgraph. An
edge clique cover of size k in graph G is a decomposition of set E into k subsets
C1,C2, . . . ,Ck such that Ci , i = 1, 2, . . . , k induces a clique in G and each edge
{u, v} ∈ E is included in some Ci . A trivial clique cover can be specified by the set
of edges E with each edge being a clique. The problem of finding a clique cover with
minimum number of cliques (and many variants thereof) is known to be NP-hard [7].

In the literature, the ECC problem and its variants have been extensively investi-
gated from theoretical perspectives and have found applications in disparate areas. In
[3], the authors describe a branch-and-bound approach to determine sparse Jacobian
matrices. Given the sparsity pattern of the Jacobian, the problem is to find a partition
of the columns into structurally orthogonal column groups of smallest cardinality.
Blanchette et al. [15] study the protein complex identification problem from compu-
tational biology, where the problem is to identify overlapping protein complexes in
protein-protein interaction networks. When modelled as a graph problem, the goal is
to decompose the network into a smallest collection of cliques. Several polynomial
time algorithms have been proposed in the paper for graphs with bounded tree-width.
In sensory science, a seemingly unrelated application area, a frequently occurring
task is concerned with the concise representation of pairwise interaction of products
with many attributes [14, 16]. This pairwise information can be given in a tabular
form called “compact letter display”. The challenge is to minimize redundant infor-
mation. It has been shown that this problem can be posed as a variant of the ECC
problem [16].

Many heuristics have been proposed in the literature to approximately solve ECC
problem while there are only few exact methods which are usually limited to solving
small instance sizes. A recent approach is described by Gramm et al. in [10], where
they introduce and analyze data reduction techniques to shrink the instance size
without sacrificing the optimal solution. The main idea is that with small enough
instance sizes, exact algorithms may become feasible.

In this paper we propose a compact representation of network data based on sparse
matrix data structures [3] and provide an improved algorithm based on an existing
heuristic for finding clique cover. Our approach is based on the simple but critical
observation that for a sparse matrix A ∈ R

m×n , the column intersection graph of A
is isomorphic to the adjacency graph of A�A, and that the row intersection graph
of A is isomorphic to the adjacency graph of AA� [5]. Consequently, the subset of
columns corresponding to nonzero entries in row i induces a clique in the adjacency
graph of A�A, and the subset of rows corresponding to nonzero entries in column
j induces a clique in the adjacency graph of AA�. Note that, matrices A�A and
AA� are most likely dense even if matrix A is sparse. In this work, we exploit the
connection between sparse matrices and graphs in the reverse direction. We show
that given a graph (or network), we can define a sparse matrix, intersection matrix,
such that graph algorithms of interest can be expressed in terms of the associated

Covering Large Complex Networks by Cliques—A Sparse Matrix Approach 119

intersection matrix. This structural reduction enables us to use existing sparse matrix
computational framework to solve graph problems [5]. This duality between graphs
and sparsematrices has also been exploitedwhere the graph algorithms are expressed
in the language of sparse linear algebra [1, 4]. However, they use adjacency matrix
representation which is different from our intersection matrix representation.

We organize the rest of the paper in the following way. In Sect. 2, we present our
main theoretical result that allows us to pose the ECC problem as amatrix determina-
tion problem. This is followed by a brief description of the clique-cover heuristic of
[11]. Next, we describe algorithms for preprocessing the vertices according to their
degree in the graph. Results from numerical experiments on a standard collection of
test instances are provided in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 Compact Representation and Edge Clique Cover

Classical data structures adjacency matrix (full matrix storage) and adjacency list
for representing graphs are inadequate for efficient computer implementation of
many important graph operations. Adjacency matrix is costly for sparse graphs and
typical adjacency list implementations employ pointers where indirect access leads
to poor cache utilization. In a typical adjacency list implementation of undirected
graphs, each edge is represented twice. An alternative adjacency list representation
of undirected labelled graph avoids this redundancy by storing each edge only once,
where the edges incident on each vertex are stored in sorted order of vertex labels
[17]. The intersection matrix representation below enables efficient representation of
pairwise information where the edges are implicit. Moreover, it allows us to utilize
computational framework DSJM to implement the ECC algorithms.

2.1 Intersection Matrix

We require some preliminary definitions. The adjacency graph associated with a
matrix J ∈ R

n×n is a graphG = (V, E) in which for each column or row k of J there
is a vertex vk ∈ V and J (i, j) �= 0 implies {vi , v j } ∈ E . The column intersection
graph associated with matrix J ∈ R

m×n is a graph G = (V, E) in which for each
column k of J there is a vertex vk ∈ V and {vi , v j } ∈ E whenever there is a row l
for which J (l, i) �= 0 and J (l, j) �= 0.

LetG = (V, E) be an undirected and connected graphwithout self-loops ormulti-
ple edges between a pair of vertices. The adjacency matrix A(G) ≡ A ∈ {0, 1}|V |×|V |
associated with graph G is defined as,

A(i, j) =
{
1 if {vi , v j } where i �= j is in E
0 otherwise

120 W. M. Abdullah et al.

Unlike the adjacency matrix which is unique (up to a fixed labeling of the vertices)
for graphG, there can bemore than one (column) intersection matrix associated with
graphG. We exploit this flexibility to store a graph in a structured and space-efficient
form using an intersection matrix. Let the edges in E be labelled e1, . . . , e|E |. An
intersection matrix associated with graph G = (V, E) where |V | = n and |E | =
m, is a matrix C ∈ {0, 1}m×n where for edge ek = {vi , v j }, k = 1, . . . ,m we have
C(k, i) = C(k, j) = 1, and all other entries of matrix C are zero.

Let C ∈ {0, 1}m×n be the intersection matrix as defined above associated with a
graph G = (V, E). Consider the product B = C�C .

Theorem 1 The adjacency graph of matrix B is isomorphic to graph G.

Proof Consider an arbitrary edge ek = {vi , v j } of graph G. By construction, row
k of the intersection matrix C has C(k, i) = C(k, j) = 1 and C(k, l) = 0 for l /∈
{i, j}. Since there are no multiple edges in G, there is one and only one such row k
corresponding to edge ek . Element B(i, j) is the inner product of column vectors i
and j of matrixC . The inner product is 1 if and only ifC(k, i) = C(k, j) = 1. Thus,
ek is in E if and only if B(i, j) = 1 implying that it is an edge connecting vertices
vi and v j of the adjacency graph of matrix B. This proves the theorem. �

Theorem 1 establishes the desired connection between a graph and its sparse matrix
representation. For a vertex v ∈ V we define by Nv = {w ∈ V | {v,w} ∈ E} the set
of its neighbors. The degree of a vertex v, denoted d(v), is the cardinality of set Nv .
The following result follows directly from Theorem 1.

Corollary 1 The diagonal entry B(i, i) where B = C�C and C is the intersection
matrix of graph G, is the degree d(vi) of vertex vi ∈ V, i = 1, . . . , n of graph G =
(V, E).

Intersection matrix C defined above represents an edge clique cover of cardinality
m for graph G. Each edge {vi , v j } constitutes a clique of size 2. In the intersection
matrix C , the clique (edge) is represented by row k with C(k, i) = C(k, j) = 1 and
other entries in the row being zero. In general, column indices l in row k where
C(k, l) = 1 constitutes a clique on vertices vl of graph G. Thus the ECC problem
can be cast as a matrix compression problem.

ECC Matrix Problem Given A ∈ {0, 1}m×n determine A′ ∈ {0, 1}k×n with k mini-
mized such that the intersection graphs of A and A′ are isomorphic.

Figure1a displays a graph on 5 vertices. Figure1b depicts an intersection matrix
representing an edge clique cover of cardinality 7 (number of edges). In the figure a
dark dot represents numerical value 1 while a blank entry is a zero. The intersection
matrix in Fig. 1c corresponds to an edge clique cover with three cliques. This is
also the minimum clique cover for the given graph. To verify that it represents a
clique cover, we examine each row of the matrix. Row 1 has dots in columns 1, 3, 4
representing the clique on vertices 1, 3, 4. Row 2 represents the clique on vertices
2, 4, 5 and the remaining edge is covered by row 3.

Covering Large Complex Networks by Cliques—A Sparse Matrix Approach 121

Fig. 1 ECC as a sparse matrix problem

2.2 A Heuristic for Clique Cover

The heuristic algorithm that we have implemented for the ECC problem is based on
an algorithm due toKellerman [11]. For ease of presentationwe discuss the algorithm
in graph theoretic terms. However, our computer implementation uses sparse matrix
framework of DSJM [5] and all computations are expressed in terms of intersection
matrices.

There is a close connection between the clique cover of a graph G = (V, E)
and the coloring of vertices of the complement graph Ḡ = (V, Ē) where Ē =
{{u, v} | {u, v} /∈ E}. In the classical graph coloring problem, vertices of the graph
are partitioned into subsets (colors) such that pair of vertices connected by an edge
are in different subsets. The optimization version asks for the partition with smallest
number of subsets. It is well-known that the greedy coloring heuristic is sensitive to
the order in which the vertices are processed (see [3]). Consider an optimal coloring
of graph G and order the vertices in nondecreasing color index. It is not difficult to
see that the greedy heuristic on graph G with the given order of the vertices produces
optimal coloring. We experimentally verify that the ECC heuristic is sensitive to
the ordering in which the vertices are processed. We employ three vertex ordering
algorithms from the literature: Largest-first order (LFO), Smallest-Last Order (SLO),
and Incidence-degree Order (IDO) prior to applying the heuristic [11]. We recall that
d(v) = |Nv| denotes the degree of vertex v in graph G = (V, E).

• (LFO) Order the vertices such that {d(vi), i = 1, . . . , n} is nonincreasing.
• (SLO) Assume that the last n − k vertices {vk+1 . . . , vn} in smallest-last order
have been determined. The kth vertex in the order is an unordered vertex whose
degree in the subgraph induced by

122 W. M. Abdullah et al.

V \ {vk+1, . . . , vn}

is minimum.
• (IDO)Assume that the first k − 1 vertices {v1 . . . , vk−1} in incidence-degree order
have been determined. Choose vk from among the unordered vertices that has
maximum degree in the subgraph induced by

{v1, . . . , vk}

Next, we present the algorithm for the ECC problem.
Let the vertices of graph G = (V, E) be ordered in one of SLO, LFO, and IDO:

v1, . . . , vn . Also, let VP = {v1, . . . , vi−1} denote the vertices that have been assigned
to one ormore cliques {C1, . . . ,Ck−1} and vi be the vertex currently being processed.
Denote by set

W = {v j | j < i and {vi , v j } ∈ E}

the neighbors of vi in VP . The task is to assign vi to one or more of the existing
cliques (or create a new clique) such that each edge incident on vi that connects to a
vertex in VP is covered by a clique. There are three possibilities:

Case I. W is empty: Create a new clique Ck = {vi }
Case II. W is not empty:

Case a. There is a cliqueCl, l ∈ {1, . . . , k − 1} such thatW = Cl : add vi toCl

Case b. There is no such clique:
i. If Cl ⊂ W for some l, add vi to Cl together with uncovered edges

from VP . Update W by removing edges that got covered.
ii. If there are uncovered edges after step II(b(i)) create a new clique

from an existing clique and add vi and the incident edges until all
the edges of W are covered.

The complete algorithm is presented below.

VertexOrderedECC (W , list)
1: k ← 0 	 Number of cliques
2: for index = 1 to N do 	 N denotes the number of vertices
3: i ← list[index] 	 list contains the vertices in a predefined order
4: if W = ∅ then 	 W ← { j | j < i and {i, j} ∈ E}
5: k ← k + 1
6: Ck ← {i} 	 Ck denotes kthclique
7: else
8: U ← ∅ 	 Contains neighbours of i , which are in the cliques
9: for l = 1 to k do
10: if Cl ⊆ W then
11: Cl ← Cl ∪ {i}
12: U ← U ∪ Cl

13: if U = W then

Covering Large Complex Networks by Cliques—A Sparse Matrix Approach 123

14: break
15: W ← W \U
16: while W �= ∅ do
17: Max ← ∅
18: MI Nl ← 0
19: for l = 1 to k do
20: if |Max | < |(Cl ∩ W)| then
21: Max ← (Cl ∩ W)

22: MI Nl ← l
23: l ← MI Nl

24: k ← k + 1
25: Ck ← (Cl ∩ W) ∪ {i}
26: W ← W \ Cl

27: return C1,C2, ...,Ck

We argue that the cliques C1,C2, ...,Ck returned by the algorithm constitutes an
edge clique cover for the input graph G.

Themain for-loop (line 2) reads the next vertex (i) from the ordered list of vertices
and tries to include it in one of the existing cliques, or creates newclique(s)with vertex
i included. If vertex i has no neighbor (W = ∅) in VP , a new clique gets created (line
6). If the neighbor setW is not empty, the algorithm tries to identify existing cliques
Cl that are subsets ofW and assigns vertex i to each of them (lines 9 – 15,Case 2. a.
and Case 2. b. i.). This step covers edges of the form {i, i ′} where i ′ ∈ Cl,Cl ⊂ W .
Finally, the while-loop (line 16) covers the remaining edges (Case II. b. ii.) of
the form {i, i ′} where i ′ ∈ S, S = W ∩ C ′

l , l
′ ∈ {1, 2, . . . , l} with |S| maximum. The

maximality on |S| ensures that each newly created clique covers largest number of
uncovered edges. For a graph G = (V, E) each edge is a clique of size 2 so that set
E constitute an (trivial) ECC. Therefore, each edge of input graph G eventually gets
assigned to one of the cliques output by algorithm VertexOrderedECC.

The above discussion can be summarized in the following result.

Lemma 1 The collection {C1,C2, . . . ,Ck} computed by Algorithm VertexOrdere-
dECC constitutes an ECC of graph G.

3 Numerical Testing

In this section, we provide results from numerical experiments on selected test
instances. The graph instances are chosen from standard benchmark collections
that are used in the literature for ECC and closely related graph problems such as,
graph coloring, graph partitioning, etc. The data set for the experiments is obtained
from the University of Florida SparseMatrix Collection [12]. Instances chesapeake,
delaunay_n10 to 13, as-22july06 are from “10th DIMACS Implementation Chal-
lenge” benchmark collection for graph clustering and graph partitioning. Instances
ca-GrQc, as-735, Wiki-Vote, p2p-Gnutella04, Oregon-1 are from “Stanford Net-

124 W. M. Abdullah et al.

work Analysis Platform (SNAP)” collection. These instances represent social net-
works from variety of apllications. We also consider the data set for Compact Letter
Displays used in [13]. The experiments were performed using a PC with 3.4G Hz
Intel Xeon CPU, 8 GB RAM running Linux. The implementation language was C++
and the code was compiled using −O2 optimization flag with a g++ version 4.4.7
compiler.

A short description of the data set for our experiments is as follows:

• chesapeake: Symmetric, undirected graph and contains 39 vertices and 170 edges.
• delaunay_n10 to 13: The graphs are symmetric and undirected. The minimum
degree is 3 for all of them and the maximum degrees are 12, 13, 14 and 12 respec-
tively.

• as-22july06: The graph is symmetric and undirected having maximum degree
2.4K and minimum degree 1.

• ca-GrQc: General Relativity and Quantum Cosmology network covers scientific
collaboration between authors in this field. This graph contains an undirected edge
from i to j , if author i co-authored a paper with author j .

• as-735: An autonomous system which represents a communication network of
who-talks-to whom.

• Wiki-Vote: This data set contains voting data of Wikipedia till January 2008
where the contest was between volunteers to become one of the administrator.
There is a directed edge from node i to node j if user i voted for user j .

• p2p-Gnutella04: A snapshoot of Gnutella peer-to-peer file sharing network on
August 04, 2002.Adirected graphwhere nodes represent hosts and edges represent
connection between hosts.

• Oregon-1: Undirected graph where autonomous system peering information is
inferred from Oregon route-views on May 26, 2001.

• Triticale, winter wheat and oilseed rape yield trials: These instances are from
the application “compact letter display” [13] to test ECC algorithms.

Test results for the selected test instances from group DIMACS10 and SNAP are
reported in Tables1 and 2 respectively. Test results for Compact Letter Display are
reported in Table3. Here, N represents the number of vertices and M represents the
number of edges of the graph. |C | represents number of cliques required to cover all
the edges.

For comparison we also show the ECC results where no specific vertex ordering is
employed, in addition to ordering algorithms LFO, SLO, and IDO. Column labelled
Natural reports the ECC result when the vertices are processed in the order they are
specified in the data file. On DIMACS10 instances, smallest last order gives the best
result except for instance named as-22july06. On SNAP instances largest-first
order is the overall winner. Note that on both sets of test instances ordered approach
produces strictly better ECC compared with Natural. We remark that OCaml
implementation from [2] fails (hangs) to run on DIMACS10 and SNAP instances.
As such no comparison of the ECC quality (size) can be made. Table3 displays

Covering Large Complex Networks by Cliques—A Sparse Matrix Approach 125

Table 1 Test results for DIMACS10 matrices

Matrix Natural SLO LFO IDO

Name N M |C | |C | |C | |C |
chesapeake 39 170 90 79 83 80

delaunay_n10 1024 3056 1300 1223 1302 1268

delaunay_n11 2048 6127 2610 2482 2617 2527

delaunay_n12 4096 12264 5228 4973 5264 5061

delaunay_n13 8192 24547 10489 9937 10541 10121

as-22july06 22963 48436 34695 34772 34568 34666

Table 2 Test results for SNAP matrices

Matrix Natural SLO LFO IDO

Name N M |C | |C | |C | |C |
ca-GrQc 5242 14496 3791 3879 3777 3900

as-735 7716 13895 9055 9108 8985 9038

Wiki-Vote 7115 103689 43497 45530 42482 45491

p2p-
Gnutella04

10876 39994 38475 38474 38475 38474

Oregon-1 11174 23409 15736 15807 15631 15857

Table 3 Test results for compact letter displays [13]

Graph Degree
ordered
method

Insert-
absorb

Clique-
growing

Search tree

Name N M |C | |C | |C | |C |
Triticale 1 13 55 4 4 4 4

Triticale 2 17 86 5 5 5 5

Wheat 1 124 4847 50 56 50 49

Wheat 2 121 4706 48 50 48 48

Wheat 3 97 3559 32 39 32 31

Rapeseed 1 47 576 20 20 20 20

Rapeseed 2 57 1040 20 20 20 20

Rapeseed 3 64 1260 24 24 24 24

Rapeseed 4 62 1085 19 19 19 19

Rapeseed 5 64 1456 19 19 19 19

Rapeseed 6 70 1416 27 27 27 27

Rapeseed 7 74 1758 26 29 27 25

Rapeseed 8 59 1128 17 17 17 17

Rapeseed 9 76 1835 30 30 30 30

126 W. M. Abdullah et al.

results using our degree ordered method and two other algorithms discussed in [13].
Insert Absorb and Search Tree require exponential running time while
Clique Growingmethod is an improved implementation of the heuristic of [11].
Search Tree is an exact method that produces optimal ECC. Degree Order
Method reports the best ECC of our implementation. It is evident from the table
that our method produces optimal or near optimal (off by 1) ECC.

4 Conclusion

In this work, we have shown that the connection between large networks and their
sparse matrix representation can be exploited to employ efficient techniques from
sparse matrix determination literature in graph algorithms [18, 19]. The edge clique
cover problem is recast as a sparse matrix determination problem. The notion of
intersection matrix provides a unified framework that facilitates compact represen-
tation of graph data and efficient implementation of graph algorithms. The adjacency
matrix representation of a graph can potentially have many nonzero entries since it is
the product of an intersection matrix with its transpose. We have shown that, similar
to graph vertex coloring problem, the ECC problem is sensitive to ordering of the
vertices.

Acknowledgements We thank referees for their many valuable suggestions that helped improve
the paper. This research was partially supported by the Natural Sciences and Engineering Research
Council (NSERC) under Discovery Grants Program.

References

1. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2011)

2. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algorithms for clique
cover. J. Exp. Algorithmics (JEA). 13, 2–15 (2009)

3. Hossain, S., Khan,A.I.: Exact coloring of sparsematrices. In: Kilgour, D.M., et al. (eds.) Recent
Advances in Mathematical and Statistical Methods. Springer Proceedings in Mathematics and
Statistics, vol. 259, pp. 23–36. Springer Nature, Switzerland AG (2018)

4. Kepner, J., Jananthan, H.: Mathematics of Big Data: Spreadsheets, Databases, Matrices, and
Graphs. MIT Press (2018)

5. Hasan, M., Hossain, S., Khan, A.I., Mithila, N.H., Suny, A.H.: DSJM: a software toolkit
for direct determination of sparse Jacobian matrices. In: Greuel, G.M., Koch, T., Paule, P.,
Sommese, A. (eds.) ICMS2016, pp. 425–434. Springer International Publishing, Switzerland
(2016)

6. Hossain, S., Suny, A.H.: Determination of large sparse derivative matrices: structural: orthogo-
nality and structural degeneracy. In: Randerath, B., Röglin, H., Peis, B., Schaudt, O., Schrader,
R., Vallentin, F., Weil, V. (eds.) 15th Cologne-Twente Workshop on Graphs & Combinatorial
Optimizationpp, pp. 83–87. Cologne, Germany (2017)

7. Kou, L.T., Stockmeyer, L.J., Wong, C.K.: Covering edges by cliques with regard to keyword
conflicts and intersection graphs. Commun. ACM. 21(2), 135–139 (1978)

Covering Large Complex Networks by Cliques—A Sparse Matrix Approach 127

8. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press (1994)

9. James, O.: Contentment in graph theory: covering graphs with cliques. Indagationes Mathe-
maticae (Proceedings), vol. 80, no. 5. North-Holland (1977)

10. Gramm, J., Guo, J., Hüffner, F. Niedermeier, R.: Data reduction, exact and heuristic algo-
rithms for clique cover. In: Proceedings of the Eighth Workshop on Algorithm Engineering
and Experiments (ALENEX). pp. 86–94. SIAM (2006)

11. Kellerman, E.: Determination of keyword conflict. IBM Tech. Discl. Bull. 16(2), 544–546
(1973)

12. SuiteSparse Matrix Collection. https://sparse.tamu.edu/. Accessed 02 Oct 2019
13. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R., Piepho, H., Schmid, R.: Algorithms for

compact letter displays: comparison and evaluation. Comput. Stat. Data Anal. 52, 725–736
(2007)

14. Nestrud, M.A., Ennis, J.M., Fayle, C.M., Ennis, D.M., Lawless, H.T.: Validating a graph the-
oretic screening approach to food item combinations. J. Sens. Stud. 26(5), 331–338 (2011)

15. Blanchette, M., Kim, E., Vetta, A.: Clique cover on sparse networks. In: 2012 Proceedings of
the FourteenthWorkshop onAlgorithmEngineering and Experiments (ALENEX), pp. 93–102.
Society for Industrial and Applied Mathematics, 2012 Jan 16

16. Ennis, J.M., Ennis, D.M.: Efficient representation of pairwise sensory information. IFPress
15(3), 3–4 (2012)

17. Tinhofer, G.: Generating graphs uniformly at random. In: Tinhofer, G., Mayr, E., Noltemeier,
H., Syslo, M.M. (eds.) Computational Graph Theory. Computing Supplementum, vol. 7, pp.
235–255. Springer, Vienna (1990)

18. Hossain, S., Steihaug, T.: Graph models and their efficient implementation for sparse Jacobian
matrix determination. Discrete Appl. Math. 161(12), 1747–1754 (2013)

19. Hossain, S., Steihaug, T.: Optimal direct determination of sparse Jacobian matrices. Optim.
Methods Softw. (2012). https://doi.org/10.1080/10556788.2012.693927

https://sparse.tamu.edu/
https://doi.org/10.1080/10556788.2012.693927

	 Covering Large Complex Networks by Cliques—A Sparse Matrix Approach
	1 Introduction
	2 Compact Representation and Edge Clique Cover
	2.1 Intersection Matrix
	2.2 A Heuristic for Clique Cover

	3 Numerical Testing
	4 Conclusion
	References

